Exercise 24

Given functions $q(x)=\frac{1}{\sqrt{x}}$ and $h(x)=x^{2}-9$, state the domain of each of the following functions using interval notation:
(a) $\frac{q(x)}{h(x)}$
(b) $q(h(x))$
(c) $h(q(x))$

Solution

Part (a)

Compute the function $q(x) / h(x)$.

$$
\begin{aligned}
\frac{q(x)}{h(x)} & =\frac{\frac{1}{\sqrt{x}}}{x^{2}-9} \\
& =\frac{1}{\sqrt{x}\left(x^{2}-9\right)}
\end{aligned}
$$

It's impossible to divide by zero, and it's impossible to take the square root of a negative number.

$$
\begin{gathered}
x \geq 0 \quad \text { and } \sqrt{x}\left(x^{2}-9\right) \neq 0 \\
x \geq 0 \quad \text { and } \quad\left(\sqrt{x} \neq 0 \quad \text { or } \quad x^{2}-9 \neq 0\right) \\
x \geq 0 \quad \text { and } \quad[x \neq 0 \text { or }(x+3)(x-3) \neq 0] \\
x \geq 0 \quad \text { and } \quad(x \neq 0 \text { or } x+3 \neq 0 \text { or } x-3 \neq 0) \\
x \geq 0 \quad \text { and } \quad(x \neq 0 \text { or } x \neq-3 \text { or } x \neq 3) .
\end{gathered}
$$

Therefore, the domain of $q(x) / h(x)$ in interval notation is $(0,3) \cup(3, \infty)$.

Part (b)

Compute $q(h(x))$ by plugging the formula for $h(x)$ where x is in the formula for $q(x)$.

$$
q(h(x))=\frac{1}{\sqrt{x^{2}-9}}
$$

It's impossible to divide by zero, and it's impossible to take the square root of a negative number.

$$
\begin{gathered}
x^{2}-9 \geq 0 \quad \text { and } \quad \sqrt{x^{2}-9} \neq 0 \\
(x+3)(x-3) \geq 0 \quad \text { and } \quad x^{2}-9 \neq 0 \\
(x+3)(x-3) \geq 0 \quad \text { and } \quad x^{2} \neq 9 \\
(x+3)(x-3) \geq 0 \quad \text { and } \quad x \neq \pm 3
\end{gathered}
$$

For the inequality on the left, the critical points are -3 and 3 . Partition the number line at these numbers and test where the inequality is true.

Therefore, the domain of $q(h(x))$ in interval notation is $(-\infty,-3) \cup(3, \infty)$.

Part (c)

Compute $h(q(x))$ by plugging the formula for $q(x)$ where x is in the formula for $h(x)$.

$$
m(q(x))=\left(\frac{1}{\sqrt{x}}\right)^{2}-9=\frac{1}{x}-9
$$

It's impossible to divide by zero, and it's impossible to take the square root of a negative number.

$$
x \geq 0 \quad \text { and } \quad x \neq 0
$$

Combine the two conditions.

$$
x>0
$$

Therefore, the domain of $h(q(x))$ in interval notation is $(0, \infty)$.

